I am a breastfeeding mother and i want to know if it is safe to use (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid? Is (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid safe for nursing mother and child? Does (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid extracts into breast milk? Does (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid has any long term or short term side effects on infants? Can (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid influence milk supply or can (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid decrease milk supply in lactating mothers?
- DrLact safety Score for (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid is 5 out of 8 which is considered Unsafe as per our analyses.
- A safety Score of 5 indicates that usage of (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid may cause serious side effects in breastfed baby.
- Our study of different scientific research indicates that (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid may cause moderate to high side effects or may affect milk supply in lactating mother.
- Our suggestion is to use safer alternate options rather than using (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid .
- It is recommended to evaluate the advantage of not breastfeeding while using (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid Vs not using (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid And continue breastfeeding.
- While using (3beta,20beta)-20-carboxy-11-oxo-30-norolean-12-en-3-yl 2-O-beta-D-glucopyranuronosyl-alpha-D-glucopyranosiduronic acid Its must to monitor child for possible reactions. It is also important to understand that side effects vary largely based on age of breastfed child and time of medication in addition to dosage.
- Score calculated using the DrLact safety Version 1.2 model, this score ranges from 0 to 8 and measures overall safety of drug in lactation. Scores are primarily calculated using publicly available case studies, research papers, other scientific journals and publically available data.
Root of leguminous herb is used. Content: essential oil, flavonoids, tannins, saponins, hydroxi-coumarins.... Unproven effects: anti-ulcerative and expectorant. Indication after Commission E of German Ministry of Health: gastritis, gastric ulcer, cough, bronchitis. Because of mineralocorticoid effects, Pseudoaldosteronism, Hypokalemic palsy, Hypernatremia, Edema, Heart arrhythmias and Arterial Hypertension, a longstanding use or abuse of licorice may be a cause of severe health disorders. May be a cause of abortion and premature labor if taken while pregnancy. Since it has anti-prolactin and estrogenic effects, decrease of milk production can occur within the first weeks after birth. Reportedly, one case of hyperprolactinemia has occurred. There is no proof on its galactagogue effect. Glycyrrhizin is responsible of many effects of Licorice which is excreted in small amount into breast milk. Two infants younger than one months were severely intoxicated (lethargy) after their mothers had drunk an daily average of 2 liters of a beverage containing a mixture of Licorice, Fennel, Anise and Goat's rue. It was assumed to be related to anethol contained in the fennel and anise.
Licorice (Glycyrrhiza glabra) root contains glycyrrhizin (also called glycyrrhizic acid or glycyrrhizinic acid) and a mixture of the potassium and calcium salts of glycyrrhizic acid. Glycyrrhizin is metabolized to the active glycyrrhetinic acid in the intestine. Deglycyrrhizinated licorice (DGL) has had glycyrrhizin removed. Licorice is a purported galactogogue, and is included in some Asian proprietary mixtures to increase milk supply; however, no scientifically valid clinical trials support this use. In fact, licorice usually reduces serum prolactin,[1] which might decrease milk production in the early stages of lactation. Women taking licorice have experienced elevated blood presure.[2] Galactogogues should never replace evaluation and counseling on modifiable factors that affect milk production.[3] Glycyrrhizin is detectable in the breastmilk of some women taking licorice, but studies measuring glycyrrhetinic acid have not been performed. Licorice has been used safely and effectively in combination with other herbs given to infants as a tea for the short-term treatment of colic.[4] However, two infants whose mothers had an excessive intake of an herbal tea that contained licorice had signs of anethole toxicity.[5] Because both of these papers reported on herbal mixtures, the effect(s) of licorice alone cannot be determined. Licorice and licorice extract are "generally recognized as safe" (GRAS) as foods by the U.S. Food and Drug Administration. Long-term, excessive use of licorice can cause hypertension, hypokalemia, and disturbances of adrenal hormones, and therefore should probably be avoided during nursing. Dietary supplements do not require extensive pre-marketing approval from the U.S. Food and Drug Administration. Manufacturers are responsible to ensure the safety, but do not need to the safety and effectiveness of dietary supplements before they are marketed. Dietary supplements may contain multiple ingredients, and differences are often found between labeled and actual ingredients or their amounts. A manufacturer may contract with an independent organization to verify the quality of a product or its ingredients, but that does certify the safety or effectiveness of a product. Because of the above issues, clinical testing results on one product may not be applicable to other products. More detailed information #about dietary supplements# is available elsewhere on the LactMed Web site.
Two breastfed infants, aged 15 and 20 days, were admitted to the hospital for a reported lack of weight gain in the previous 7 to 10 days, caused by "difficult feeding". The parents reported restlessness and vomiting during the past day. One of the mothers also reported feeling drowsy and weak. On examination, the infants were afebrile but had hypotonia, lethargy, emesis, weak cry, poor sucking and weak responses to painful stimuli. Infant laboratory values, electrocardiograms and blood pressures were normal, and septic work-ups were negative. Both mothers had both been drinking more than 2 liters daily of an herbal tea mixture reportedly containing licorice, fennel, anise, and goat's rue to stimulate lactation. After the mothers discontinued breastfeeding and the herbal tea, the infants improved within 24 to 36 hours. Symptoms of the affected mother also resolved rapidly after discontinuing the herbal tea. After 2 days, breastfeeding was reinstituted with no further symptoms in the infants. Both infants were doing well at 6 months of age. The authors attributed the maternal and infant symptoms to anethole, which is found in both anise and fennel; however, the anethole levels were not measured in breastmilk, nor were the teas tested for their content.[5]
A woman with a history of excessive licorice intake had amenorrhea, severe headaches, hypertension, hypokalemia. She had elevated serum prolactin levels that remained abnormal for one month after licorice discontinuation and normalized by 6 months after discontinuation.[7] In a study of 25 men and 25 women, the baseline and thyrotropin-stimulated serum prolactin levels were measured to determine normal serum prolactin values. Subjects who regularly ingested licorice had lower basal and lower stimulated serum prolactin concentrations.[1] A traditional, nonstandardized decoction of peony and licorice roots called Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese was studied in women with elevated serum prolactin caused by long-term (>6 months) ingestion of risperidone. Patients received either bromocriptine 5 mg daily for 4 weeks followed by 4 weeks of 22.5 grams daily of the peony-licorice decoction (equivalent to 25 mg of glycyrrhetinic acid), or the same drugs in the reverse order. Evaluation of serum prolactin found that both treatments reduced serum prolactin by 21 to 28% from baseline at 4 and 8 weeks.[8] Forty women who complained of an insufficient milk supply at 5 days postpartum were given a combination herbal supplement as 2 capsules of Lactare (Pharma Private Ltd., Madras, India; currently available from TTK Pharma, Chennai, India) 3 times daily. Each capsule contained wild asparagus 200 mg, ashwagandha (Withania somnifera) 100 mg, fenugreek 50 mg, licorice 50 mg, and garlic 20 mg. By day 4 of therapy, no infants required supplementary feeding. Infants were weighed before and after each feeding on the fifth day of maternal therapy to determine the amount of milk ingested. On the day of the test weighing, infants' milk intake averaged 388 mL, and the fluid and caloric intake was considered adequate.[9] This study cannot be considered as valid evidence of a galactogogue effect of these herbs because it lacks randomization, blinding, a placebo control, and maternal instruction in breastfeeding technique. Additionally, infants were breastfed only 6 to 8 times daily, which is insufficient to maximize milk supply at this stage of lactation. Women who were between 14 and 90 days postpartum and reported lactation failure were given instructions on breastfeeding technique and encouraged to exclusively breastfeed. If their infant had gained less than 15 grams in 1 week, they were randomized to receive either two tablespoonfuls of a mixture containing wild asparagus or an identical placebo for 4 weeks. In each 100 grams, the mixture contained Asparagus racemosus 15 grams, Anethum soiva 1 gram, Ipomea digitata 1 gram, Glycyrrhiza glabra 1 gram, Spinacia oleracea 2.5 grams, Cuminum cyminum 0.5 gram, and Panchatrinamol 1 gram. Of the 64 women randomized, 11 did not complete the trial. Serum prolactin measurements were made before a morning nursing before treatment and after 4 weeks of treatment. Infant weight gains and the number of supplemental feedings were recorded initially and after 4 weeks of therapy. No differences were found in the changes in serum prolactin, infant weight gain or amount of supplementation between the treatment and placebo groups after 4 weeks of therapy. No side effects or changes in liver function tests occurred during the study.[10] A study in Japan compared the use of a mixture of 13 herbs, including licorice, to ergonovine for their effects on lactation and serum prolactin in postpartum women. The herbal mixture, called Xiong-gui-tiao-xue-yin, was given in a randomized fashion to 41 women in a dose of 2 grams of a dried aqueous extract 3 times daily. A comparable group of 41 women were randomized to receive methylergonovine 0.375 mg daily. Therapy was started on the day of delivery, but the duration of therapy was not specified. Plasma oxytocin and prolactin were measured on days 1 and 6; milk volumes were measured daily, although the method of measuring milk volume was not specified. Serum prolactin was higher on days 1 and 6 in the women who received the herbals; plasma oxytocin was lower on day 1 in the women who received the herbal, but not different on day 6. Milk volumes were greater on days 4, 5, and 6 in women who received the herbal mixture.[11] This study has serious flaws that make its interpretation impossible. First, milk volume measurement is subject to considerable variability depending on the measurement method used, but the method was not specified. Second, methylergonovine has caused decreases in serum prolactin and milk production in some studies.[12][13] Because of the lack of a placebo group, the differences found could be a negative effect of methylergonovine rather than a positive effect of the herbal preparation. Because this study used a multi-ingredient combination products in which licorice was only one component, the results might be different from studies in which licorice was used alone. In an uncontrolled, non-blinded multicente
Disclaimer:
Information presented in this database is not meant as a substitute for professional judgment. You should consult your healthcare provider for breastfeeding advice related to your particular situation. We do not warrant or assume any liability or responsibility for the accuracy or completeness of the information on this Site.